biwin.co.uk

heory of Automata Lecture Notes: 1. Introduction & Theory of Formal Language

Computers run the world.

I am the cheese.

I never tell lies.

Now consider the derivation (construction) of the first sentence using the above grammar.

sentence	F0 DE F0 DE	subject This	verb-phrase verb-phrase		
	FØ DE	This	verb	object	
	FØ DE	This	is	object	
	FØ DE	This	is	a	noun
	FØ DE	This	is	a	university

In addition to several reasonable sentences, some can also derive nonsense sentences like 'Computers run cheese' or 'This am a lies'. These sentences don't make semantic sense, but they are syntactically correct because they are of the sequence of **subject**, **verb-phrase**, **verb** and **object**.

It is very difficult to define the complete language with a finite number of rules. It is difficult to list all acceptable sentences of a language. In general the language should have the following properties:

- · Well defined, without ambiguity.
- Using formula, we should be able to recognize in a finite time, whether any given word is in the language or not.

Formal Definition of Grammar:

A formal definition of a grammar G can be given in 4-tuples as:

 $G = (N, \Sigma, P, S)$ where N is a finite set of non-terminals;

 Σ or T is a finite nonempty set of terminals; S is the start symbol and S , and $\mathfrak{A}_{\mathfrak{B}}$

P is a finite set of productions of the form: $\alpha \to \beta$ as given in the above English grammar.

Definitions of the terms used above & some other grammar related terms are described as:

Symbols: A symbol means a point, letters, digits etc.

An alphabet: An alphabet () is a finite, nonempty set of fundamental units, set of letters, character or symbols (Cohen pp-8)

i.e. $\frac{1}{5}$ = {a, b, c,...z}i.e. an alphabet of cardinality 26.

PAGE 1 of NUMPAGES 9

Inst: Dr. Mohammed Yousuf Khan