comp-gas/9305005v1 30 May 1993

"

arxiv

biwin.co.uk

A New Class of Cellular Automata for
Reaction-Diffusion Systems

Jirg R. Weimar and Jean-Pierre Boon
Faculté des Sciences, O P, 231
Université Libre de Bruzelles, B-1050 Bruxelles, Belgium
E-mail: jweimardulb.ac.be, jpboon@ulb.ac.be
{May 22, 1903)

We introduce a new class of cellular antomata to model
reaction-diffusion systems in a quantitatively correct way,
The construction of the CA from the reaction-diffusion eqia-
tion relies on a moving average procedure to implement dif-
fugion. and a probahilistic table-lookup for the reactive part.
The applicability of the new CA is demonstrated using the
C:imf.lmrg-]m_mlﬂu equation.
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Cellular automata models have been used in many ap-
plications to model reactive and diffusive systems [1.2].
Most uses of cellular automata (CAs) can be classified
into one of four approaches: (i) Ising-type models of
phase transitions; (ii) lattice gas models (the lattice gas
method was initially developed to model hydrodynamic
flows and has been extended in many directions [3.4]);
(1ii) systematic investigation of the behavior of CAs by
investigating olf rules of a certain class (e.g., all possi-
ble rules for one-dimensional automata with two states
and nearest neighbor interaction) [1]; and (iv) qualita-
tive discrete modelling {including operational use of CAs
as an alternative to partial differential equations (PDEs)
[5]). These models are generally based on qualitative
rather than quantitative information about the system
to be modelled. A CA is constructed which preserves
the qualitative features deemed most relevant and it is
then investigated [The lattice gas methods were also de-
veloped along these lines [6]). Existing CA models for
reaction-diffusion systems [7-11] fall into the category
(iv}, i.e., they show gualitatively “correct” behavior and
are restricted to certain reaction-diffusion (R-D) models
and certain types of phenomena. This is the main crit-
icism of experimentalists and researchers working with
partial differential equation models, who search for quan-
titative predictions. In this letter we describe a class
of CAs which is snitable for modelling many reaction-
diffusion systems in a quantitatively correct way. The
new CAs are operationally more efficient than the reac-
tive lattice gas methods, which also achieve quantitative
correctness,  We first describe the construction of the
new class of CAs; then we present the antomaton using
the Ginzburg-Landau equation as an example.

The main idea behind this class of CAs is careful dis-
cretization. Space and time are discretized as in normal

finite difference methods for solving the PDE’s. Finite
difference methods then proceed to solve the resulting
coupled system of N »x s ordinary differential equations
(N points in space, s equations in the PDE system) by
any of a number of numerical methods, operating on
floating point numbers. The use of floating point mam-
bers on computers implies a discretization of the contin-
uous variables, The errors introduced by this discretiza-
tion and the ensning roundoff errors are often not con-
sidered explicitly, but assumed to be small because the
precision is rather high (8 decimal digits for nsnal float-
ing point munbers). In contrast, in the CA approach, all
variables are explicitly discretized into relatively small
integers. This discretization allows the use of lookup ta-
bles to replace the evaluation of the nonlinear rate func-
tions, It is this table lookup, combined with the fact
that all caleulations are performed using integers instead
of floating point variables, that accounts for an improve-
ment in speed of orders of magnitude on a conventional
multi-purpose computer. The undesirable effects of dis-
cretization are overcome by using probabilistic rules for
the updating of the CA.

The state of the CA is given by a regular array of con-
centration vectors ¥ residing on a d-dimensional lattice.
Each y(r) is a s-vector of integers (s is the number of
reactive species). For reasons of efficiency, and to ful-
fill the finiteness condition of the definition of cellular
automata, each component y;(r) can only take integer
values between 0 and b;, where the by's can be different
for each species 1. The position index r is a d-dimensional
vector in the CA lattice. For cubic lattices, r is a d-vector
of integers.

The central operation of the automaton consists of cal-
culating the sum
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of the concentrations in some neighborhood N;. The
neighborhoods can be different for each species i, A
neighborhood is specified as a set of displacement vec-
tors, e.g. in two dimensions
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